
Improving Particle Swarm Optimization with Differentially
Perturbed Velocity

Swagatam Das
 Electronics & Telecom Eng Dept.

 Jadavpur University
Kolkata 700032, India
+(91) (33) 2528-2717

swagatamdas19@yahoo.co.in

Amit Konar
 Electronics & Telecom Eng Dept.

Jadavpur University
Kolkata 700032, India
+(91) (33) 2416-2697

babu25@hotmail.com

Uday K. Chakraborty
 Math & Computer Science Dept

University of Missouri
St. Louis, MO 63121, USA

 +1 (314) 516-6339

uday@cs.umsl.edu

ABSTRACT
This paper introduces a novel scheme of improving the
performance of particle swarm optimization (PSO) by a vector
differential operator borrowed from differential evolution (DE).
Performance comparisons of the proposed method are provided
against (a) the original DE, (b) the canonical PSO, and (c) three
recent, high-performance PSO-variants. The new algorithm is
shown to be statistically significantly better on a seven-function
test suite for the following performance measures: solution
quality, time to find the solution, frequency of finding the
solution, and scalability.

Categories and Subject Descriptors
 I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search --- Heuristic methods; G.1.6 [Numerical
Analysis]: Optimization --- Global optimization; G.3 ---
Probabilistic algorithms

General Terms
Algorithms

Keywords
Particle swarm optimization, differential evolution, evolutionary
computation

1. INTRODUCTION
Particle swarm optimization (PSO) [8] is a stochastic optimization
technique that draws inspiration from the behavior of a flock of
birds or the collective intelligence of a group of social insects with
limited individual capabilities. In this paper we present an
improved PSO algorithm by proposing a new scheme of adjusting
the velocities of the particles in PSO with a vector differential
operator. The canonical PSO updates the velocity of a particle
using three terms -- a previous velocity term that provides the
particle with the necessary momentum, a social term that indicates
how the particle is stochastically drawn towards the globally best
position found so far by the entire swarm, and a cognitive term
that reflects the personal thinking of the particle, i.e., how much it
is drawn towards the best position so far encountered in its own
course. In the proposed scheme the cognitive term is omitted;
instead the particle velocities are perturbed by a new term

containing the weighted difference of the position vectors of any
two distinct particles randomly chosen from the swarm. A
survival of the fittest mechanism has also been introduced in the
swarm.

2. CANONICAL PSO AND SOME OF ITS
SHORTCOMINGS
In PSO a population of particles is initialized with random
positions Xi and velocities Vi, and a fitness function, f, is
evaluated, using the particle’s positional coordinates as input
values. In an n-dimensional search space, Xi = (xi1, xi2, xi3,...,xin)
and Vi = (vi1, vi2, vi3,...,vin). Positions and velocities are adjusted,
and the function is evaluated with the new coordinates at each
time-step. The velocity and position update equations for the d-th
dimension of the i-th particle in the swarm may be given as
follows:
Vid (t+1) = ω.Vid (t) + C1. φ1. (Plid -Xid (t)) + C2. φ2. (Pgd-X id(t))
 (1)
Xid (t+1) = Xid (t) + Vid (t+1)

The variables φ1 and φ2 are random positive numbers, drawn from
a uniform distribution, and with an upper limit φmax which is a
parameter of the system. C1 and C2 are called acceleration
constants, and ω is the inertia weight. Pli is the best solution found
so far by an individual particle, while Pg represents the fittest
particle found so far in the entire community. The canonical PSO
has been subjected to empirical [1], [7], [15] and theoretical [3],
[13] investigations by several researchers. In many occasions the
convergence is premature, especially if the swarm uses a small
inertia weight ω [15] or constriction coefficient [3]. From
equations (1), we see that if Vid is small, and if |Plid-Xid| and |Pgd-
Xid| too are small enough, Vid cannot attain a large value in the
upcoming generations. That would mean a loss of exploration
power. Such a case can occur even at an early stage of the search
process, when the particle is the global best, causing both |Plid-Xid|
and |Pgd-Xid| to be zero, and Vid gets damped quickly with the ratio
w. Also, the swarm suffers from loss of diversity in later
generations if Plid and Pgd are close enough [6], [16], [15].

3. PROPOSED ALGORITHM
In an attempt to circumvent the problems mentioned in the
previous section, we have tightly coupled a differential operator
(borrowed from differential evolution [12]) with the velocity-
update scheme of PSO. The operator is invoked on the position
vectors of two randomly chosen particles (population-members),
not on their individual best positions. Further, unlike the PSO
scheme, a particle is actually shifted to a new location only if the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

177

new location yields a better fitness value, i.e., a selection strategy
has been incorporated into the swarm dynamics.
In the proposed algorithm, for each particle i in the swarm two
other distinct particles, say j and k (i ≠ j ≠ k), are selected
randomly. The difference between their positional coordinates is
taken as a difference vector δ:

jk XX −=δ (2)

Then the d-th velocity component (1 < d < n) of the target particle
i is updated as
 Vid (t+1) = ω.Vid (t) + β.δd + C2. φ2. (Pgd-X id(t)),
 if randd (0, 1) <CR
 = Vid (t), otherwise
 (3)
where CR is the crossover probability, δd is the d-th component of
the difference vector δ defined in (2), and β is a scale factor in [0,
1]. In essence the cognitive part of the velocity update formula in
(1) is replaced with the vector differential operator to produce
some additional exploration capability. Clearly, for CR < 1, some
of the velocity components will retain their old values. Now, a
new trial location Tri is created for the particle by adding the
updated velocity to the previous position Xi:

)1()(++= tVtXTr iii (4)

The particle is placed at this new location only if the coordinates
of the location yield a better fitness value. Thus if we are seeking
the minimum of an n-dimensional
function)(),...,,(21 Xfxxxf n = , then the target particle is
relocated as follows:

ii TrtX =+)1(if ())(()(tXfTrf ii <)

)()1(tXtX ii =+ otherwise

 (5)

Therefore, every time its velocity changes, the particle either
moves to a better position in the search space or sticks to its
previous location. The current location of the particle is thus the
best location it has ever found. In other words, unlike the classical
PSO, in the present scheme, Plid always equals Xid. So the
cognitive part involving |Plid-Xid| is automatically eliminated in our
algorithm. If a particle gets stagnant at any point in the search
space (i.e., if its location does not change for a predetermined
number of iterations), then the particle is shifted by a random
mutation (explained below) to a new location. This technique
helps escape local minima and also keeps the swarm “moving”:

If(())(....)2())1()(NtXtXtXtX iiii +==+=+=

and))))(((*fNtXf i ≠+ then

for (r = 1 to n) Xir(t+N+1) = Xmin + randr(0, 1)*(Xmax-Xmin) (6)
where f* is the global minimum of the fitness function, N is the
maximum number of iterations up to which stagnation can be
tolerated and (Xmax, Xmin) define the permissible bounds of the
search space. The pseudocode for this new method, called PSO-
DV (Particle Swarm Optimization with Differentially perturbed
Velocity), is presented below:

Procedure PSO-DV
begin
 initialize population;
 while stopping condition not satisfied do
 for i = 1 to no_of_particles
 evaluate fitness of particle;
 update Pgd ;
 select two other particles j and k (i≠j≠k) randomly;
 construct the difference vector as

jk XX −=δ ;

 for d = 1 to no_of_dimensions
 if randd (0, 1) < CR
 Vid (t+1) = ω.Vid (t) + β.δd + C2. φ2. (Pgd-X id(t));
 else Vid (t+1) = Vid (t);
 endif
 endfor
 create trial location as)1()(++= tVtXTr iii

;
 if ())(()(tXfTrf ii <) then

ii TrtX =+)1(

 else)()1(tXtX ii =+ ;
 endif
 endfor
 for i = 1 to no_of_particles
 if Xi stagnates for N successive generations

for r = 1 to no_of_dimensions
 Xir(t+1) = Xmin + randr(0, 1)*(Xmax-Xmin)
 end for
 end if
 end for
 end while
end

4. EXPERIMENTAL SETTINGS
4.1 Benchmarks
We have used seven well-known benchmarks [17] to evaluate the
performance of the proposed algorithm. Here the proposed
algorithm has been tested against the original DE, canonical PSO
and three other recent variants of PSO. The benchmarks used are
presented below (n represents the number of dimensions; we used
up to 30 dimensions for the first five functions):

Sphere :

 ∑
=

=
n

i
ixxf

1

2
1)(with 100100 ≤≤− ix

Rosenbrock :

])1()(100[)(222
1

1
12 −+−=∑

−

=
+ ii

n

i
i xxxxf

 with 5050 ≤≤− ix
Rastrigin :
]10)2cos(10[)(

1

2
3 +−= ∑

=
i

n

i
i xxxf π

 with 12.512.5 ≤≤− ix
Griewank :

1)cos(
4000

1)(
11

2
4 +−= ∏∑

==

n

i

i
n

i
i i

xxxf

 with 600600 ≤≤− ix

178

Ackley :

ex
n

x
n

xf
n

i
i

n

i
i ++−−−= ∑∑

==

20)2cos1exp()1(2.0exp(20)(
11

2
5 π

 with 3232 ≤≤− ix

Schaffer’s f6:

222

222

6))(001.00.1(
5.0)(sin

5.0)(
yx

yx
xf

++
−+

+=

 with 100,100 21 ≤≤− xx
Shekel’s Foxholes:

1
25

1
2

1

6
7]

)(

1
500

1[)(−

=

=

∑
∑ −+

+=
j

i
iji axj

xf

 with 536.65,536.65 21 ≤≤− xx
The first two test functions are unimodal, having only one
minimum. The others are multimodal, with a considerable number
of local minima in the region of interest. All benchmark functions
except the f7 function have the global minimum at the origin or
very near to the origin [11]. For Shekel’s foxholes (f7), the global
minimum is at (-31.95, -31.95), with f7 (-31.95, -31.95) ≈ 0.998.

4.2 PSO Variants Used for Comparison
4.2.1 PSO-TVIW
Shi and Eberhart [11] improved the performance of the PSO
method by using a linearly varying inertia weight (ω) (over
iterations) from a predetermined maximum to a predetermined
minimum value. They empirically observed that the performance
could be improved by varying ω from 0.9 at the beginning of the
search to 0.4 at the end of the search. We use these values while
implementing their scheme. We call this version PSO-TVIW
(PSO with Time Varying Inertia Weight).

4.2.2 HPSO-TVAC
Ratnaweera et al. [10] have suggested a parameter automation
strategy for PSO where the cognitive component is reduced and
the social component increased (by varying the acceleration
coefficients C1 and C2 in (1)) linearly with time. They suggested
another modification, named “self-organizing hierarchical particle
swarm optimizer”, in conjunction with the previously mentioned
time varying acceleration coefficients (HPSO-TVAC). In this
method the inertial velocity term is kept at zero and the modulus
of the velocity vector is reinitialized to a random velocity, known
as “re-initialization velocity”, whenever the particle gets stagnant
(Vid = 0) in some region of the search space. This way, a series of
particle swarm optimizers are generated automatically inside the
main particle system according to the behavior of the particles in
the search space, until some stopping criterion is met. Following
[10], in the present paper the re-initialization velocity is kept
proportional to the maximum allowable velocity, Vmax.

4.2.3 MPSO-TVAC
In this variant [10] of PSO, the velocity of a randomly selected
particle is perturbed by a random mutation step-size if the global
best-so-far solution does not improve for a predetermined number
of generations. Following [10], we keep the mutation step-size
proportional to the maximum allowable velocity. The acceleration
coefficients are made to vary linearly with time here too.

4.3 Population Initialization
Since most of the test functions used in this paper have the global
minimum at or near the origin of the search space, we use the
asymmetric initialization method proposed by Angeline [1]. In
this scheme the population is initialized only in a certain portion
of the search space. The most common dynamic ranges found in
the literature are used in this paper and all dimensions are
confined to the same dynamic range [4], [2]. Table 1 shows the
range of initialization and the range of search for each function.

Table 1. Initialization and dynamic range of search

4.4 Simulation Strategy
Simulations were carried out to obtain a comparative performance
analysis of the new method with respect to: (a) canonical PSO, (b)
PSO-TVIW, (c) MPSO-TVAC, (d) HPSO-TVAC, and (e)
classical DE. Thus a total of six algorithms were considered – one
new, the other five existing in the literature. All benchmarks
except Schaffer’s f6 and Shekel’s foxholes were tested with
dimensions 5 through 30 (in steps of 5). Schaffer’s f6 and Shekel’s
foxholes are two-dimensional. For a given function of a given
dimension, fifty independent runs of each of the six algorithms
were executed, and the average best-of-run value and the standard
deviation were obtained. Different maximum generations (Gmax)
were used according to the complexity of the problem. For all
benchmarks (excluding f6 and f7) the stopping criterion was set as
reaching a fitness of 0.001. However, for Schaffer’s f6, the widely
used error limit of 0.00001 [9], [14] was used and for Shekel’s
foxholes the criterion was 0.998.

In the case of DE, we chose the crossover constant CR = 0.9 and
the scale factor R = 0.8. For PSO and its variants it is quite
common to limit the value of each component of the velocity
vector of each particle (Vid) to the maximum allowable value.
Through empirical studies on numerical benchmarks, Eberhart
and Shi [5] suggested that it is good to limit the maximum
velocity, Vmax, to the upper limit of the dynamic range of search,
Xmax. We used this limit in this investigation. For MPSO-
TVAC, we set the mutation probability to 0.4 and the mutation
step-size was changed from Vmax to 0.1Vmax during the search. In
the case of HPSO-TVAC, the re-initialization velocity was set to
change from Vmax to 0.1Vmax. For the new algorithm PSO-DV,
we used β = 0.8. In PSO-DV, the value of the parameter N
depends on the nature of the test function (see Table 2).

4.5 Population Size
It is common practice in DE research to use a population size ten
times the dimensionality of the search space. We take up the same
convention here for the DE. Eberhart and Shi [5] showed that the
population size has hardly any effect on the performance of the

Function Range of search Range of Initialization

f1 (-100, 100)n (50, 100)n
f2 (-50, 50)n (15, 30)n
f3 (-5.12, 5.12)n (2.56, 5.12)n
f4 (-600, 600)n (300, 600)n
f5 (-32, 32)n (15, 32)n
f6 (-100, 100)2 (15, 30)2
f7 (-65.536, 65.536)2 (0, 65.536)2

179

Table 2. Average and standard deviation of the best-of-run solution obtained for 50 runs of each of the six different methods.
Average

(Standard Deviation)

F

Dim

N

Gmax

PSO PSO-
TVIW

MPSO-
TVAC

HPSO-
TVAC DE PSO-

DV

10 50 1000 0.001 0.001 0.001 0.001 0.001 0.001

20 100 2000 0.001 0.001 0.001 0.001 0.001 0.001

f1
 30 150 4500 0.001 0.001 0.001 0.0001 0.001 0.001

10 75 3000 21.705
(40.162)

16.21
(14.917)

1.234
(4.3232)

1.921
(4.330)

2.263
(4.487)

0.0063
(0.0561)

20 150 4000 52.21
(124.32)

32.53
(75.309)

52.432
(117.178)

98.749
(120.175)

18.934
(9.453)

0.0187
(0.554)

f2

30 250 5000 76.87
(86.136)

61.56
(78.923)

32.222
(56.944)

17.134
(46.945)

0.0986
(0.338)

0.0227
(0.182)

10 50 3000 2.334
(2.297)

2.1184
(1.563)

1.78
(2.793)

0.039
(0.061)

0.006
(0.0091)

0.0014
(0.0039)

20 100 4000 13.812
(3.491)

16.36
(4.418)

11.131
(0.91)

0.2351
(0.1261)

0.0053
(0.0032)

0.0028
(0.0017)

f3

30 150 5000 6.652
(21.811)

24.346
(6.317)

50.065
(21.139)

1.903
(0.894)

0.099
(0.112)

0.0016
(0.277)

10 50 2500 0.1613
(0.097)

0.092
(0.021)

0.00561
(0.047)

0.057
(0.045)

0.054
(0.0287)

0.024
(0.180)

20 100 3500 0.2583
(0.1232)

0.1212
(0.5234)

0.0348
(0.127)

0.018
(0.0053)

0.019
(0.0113)

0.0032
(0.0343)

f4

30 150 5000 0.0678
(0.236)

0.1486
(0.124)

0.0169
(0.116)

0.023
(0.0045)

0.005
(0.0035)

0.0016
(0.0022)

10 50 2500 0.406
(1.422)

0.238
(1.812)

0.169
(0.772)

0.0926
(0.0142)

0.00312
(0.0154)

0.00417
(0.1032)

20 100 3500 0.572
(3.094)

0.318
(1.118)

0.537
(0.2301)

0.117
(0.025)

0.029
(0.0067)

0.0018
(0.028)

f5

30 150 5000 1.898
(2.598)

0.632
(2.0651)

0.369
(2.735)

0.068
(0.014)

0.0078
(0.0085)

0.0016
(0.0078)

f6 2 40 1000 0.0059
(1.672)

0.0068
(0.128)

0.0087
(0.3215)

0.00198
(0.0071)

0.00065
(0.0048)

0.00021
(0.0015)

f7 2 40 1000 1.235
(2.215)

1.239
(1.468)

1.321
(2.581)

1.328
(1.452)

1.032
(0.074)

0.9991
(0.0002)

PSO method. Van den Bergh and Engelbrecht [14] have shown
that though there is a slight improvement in the solution quality
with increasing swarm sizes, a larger swarm increases the
number of function evaluations to converge to an error limit. The
present paper uses the “ten times” rule of population size for all
the six algorithms.

5. RESULTS
The following performance measures are used for our
comparative study: (a) quality of the final solution, (b) speed of
convergence towards the optimal solution, (c) success rate
(frequency of hitting the optimum), and (d) scalability of the
algorithms against the growth of problem dimensions. Table 2
compares the algorithms on the quality of the best solution. The
mean and the standard deviation (within parentheses) of the best-
of-run solution for 50 independent runs of each of the six
algorithms are presented in Table 2. Missing values of standard
deviation in this table indicate a zero standard deviation. The best
solution in each case has been shown in bold. Table 3 shows
results of unpaired t-tests between the best algorithm and the

second best in each case (standard error of difference of the two
means, 95% confidence interval of this difference, the t value, and
the two-tailed P value). For all cases in Table 3, sample size = 50
and degrees of freedom = 98. It is interesting to see from Tables 2
and 3 that in most cases the proposed method meets or beats the
nearest competitor in a statistically meaningful way. Table 2
shows that only in two cases is the proposed method’s mean
numerically larger (i.e., worse) than the mean of the competitor
(MPSO-TVAC or DE), but as Table 3 shows, this difference is
not statistically significant. Table 4 shows, for the same set of
runs as used in Tables 2 and 3, the number of runs (out of 50) that
managed to find the optimum solution (within the given tolerance)
and also the average number of generations (in parentheses)
needed to find that solution. In Figure 1 we have graphically
presented the rate of convergence of all the methods for all the
functions. Figure 2 shows the scalability of the six methods on
the first five test functions -- how the average time to convergence
varies with an increase in the dimensionality of the search space.
These results show that the proposed method leads to significant
improvements in most cases.

180

(a) Sphere Function

(b) Griewank Function

(c) Rosenbrock Function

(d) Schaffer’s f6 function

(d) Schaffer’s f6 function

(d) Schaffer’s f6 function

(e) Rastrigin Function

(e) Rastrigin Function

(f) Ackley Function

(g) Shekel’s Foxholes Function

Figure 1. Variation of the mean best value with time (all the
graphs are for dimension = 30 except for Schaffer’s f6 and

Shekel’s Foxholes which are 2D)

181

(a) Sphere Function

(b) Griewank Function

(c) Rastrigin Function

(d) Rosenbrock Function

(e) Ackley Function

Figure 2. Variation of mean convergence time with increase in
dimensionality of the search space (the dashed line represents

the new algorithm).

Table 3. Results of unpaired t-tests on the data of Table 2

Fn, Dim Std. Err. t 95% Conf.
Intvl

Two-
tailed P

Significance

f2, 10 0.611 2.0079 (-2.4411,
-0.0143)

0.0474 Significant

f2, 20 1.339 14.1249 (-21.573,
-16.258)

< 0.0001 Extremely
significant

f2, 30 0.054 1.3981 (-0.1836,
0.0318)

0.1653 Not
significant

f3, 10 0.001 3.2854 (-0.0074,
-0.0018)

0.0014 Very
significant

f3, 20 0.001 4.8786 (-0.0035,
-0.0015)

< 0.0001 Extremely
significant

f3, 30 0.042 2.3051 (-0.1813,
-0.0135)

0.0233 Significant

f4, 10 0.026 0.6990 (-0.0706,
0.0338)

0.4862 Not
significant

f4, 20 0.005 3.0153 (-0.0245,
-0.0051)

0.0033 Very
significant

f4, 30 0.001 5.8156 (-0.0046,
-0.0022)

< 0.0001 Extremely
significant

f5, 10 0.015 0.0712 (-0.0303,
0.0282)

0.9434 Not
significant

f5, 20 0.004 6.6804 (-0.0353,
-0.0191)

< 0.0001 Extremely
significant

f5, 30 0.002 3.8002 (-0.0094,
-0.0030)

0.0003 Extremely
significant

f6, 2 0.001 0.6187 (-0.0019,
0.0010)

0.5376 Not
significant

f7, 2 0.010 3.1437 (-0.0537,
-0.0121)

0.0022 Very
significant

182

Table 4. Number of runs (out of 50) to optimality and the corresponding mean number of generations

No. of runs converged to the optimality criterion

(Average number of generations)

Fn

Dim

Gmax

 PSO PSO-
TVIW

MPSO-
TVAC

HPSO-
TVAC DE PSO-DV

10 1000 50

(618.4)

50

(820.9)

50

(667.4)

50

(349.7)

50

(348.3)

50

(267.4)

20 2000 50

(2893.8)

50

(1353.6)

50

(1316.5)

50

(443.7)

50

(522.3)

50

(434.7)

f1

30 3000 50

(2193.5)

50

(2600.4)

50

(952.5)

50

(765.8)

50

(911.6)

50

(506.9)

10 3000 0 0 24

(2852.4)

18

(2441.5)

22

(2006.7)

34

(2981.5)

20 4000 0 7

(3345)

2

(2331.5)

10

(3389.7)

15

(4067.3)

16

(2213.7)

f2

30 5000 0 0 0 10

(4793.8)

7

(5604.3)

25

(4198.4)

10 3000 2

(3100.5)

2

(3082)

35

(1296.4)

40

(2435.6)

36

(2298.2)

40

(1675.3)

20 4000 0 0

34

(2398.5)

39

(5647.9)

35

(4655.8)

43

(3984.7)

f3

30 5000 0 0 13

(4386.8)

47

(6124.2)

43

(4087.6)

48

(4751.4)

10 2500 0 8

(2351.5)

5

(2393.8)

19

(2079)

12

(2066.5)

18

(2196.5)

20 3500 13

(3286)

18

(3051.5)

29

(3329.7)

38

(2385.7)

35

(3249.4)

41

(3007.8)

f4

30 5000 34

(4087)

25

(4674.6)

8

(4541.5)

32

(4256.6)

46

(4043.2)

48

(2209.4)

10 2000 16

(1714.5)

28

(1714.3)

37

(1226.4)

40

(1640.5)

45

(1631.5)

41

(1582.6)

20 3500 5

(3432.4)

7

(3284.5)

13

(2832.8)

27

(3411.0)

36

(3132.5)

47

(2536.9)

f5

30 5000 0 5

(4903.6)

15

(4448.3)

26

(3985.4)

40

(4973.6)

43

(4956.3)

f6

2 1000 19

(625.4)

12

(386.5)

35

(423.6)

18

(344.8)

36

(621.5)

41

(503.1)

f7 2 1000 19

(457.8)

26

(892.7)

33

(848.3)

45

(617.8)

43

(756.4)

48

(343.1)

183

6. CONCLUSION
A new, efficient PSO algorithm has been presented and has been
shown to improve performance in a statistically meaningful way.
The new method has been compared against (a) the basic DE, (b)
the PSO, and (c) three best-known PSO-variants, using a seven-
function test suite, on the following performance metrics: (a)
solution quality, (b) speed of convergence, (c) frequency of hitting
the optimum, and (d) scalability.

7. ACKNOWLEDGMENTS
Partial support of UGC-sponsored projects on i) AI and Expert
Systems and ii) Excellence Program in Cognitive Science is
acknowledged. We are also thankful to four anonymous reviewers
for their valuable comments.

8. REFERENCES
[1] Angeline, P. J. Evolutionary optimization versus particle

swarm optimization: Philosophy and the performance
difference, Lecture Notes in Computer Science, vol. 1447,
Evolutionary Programming VII, (1998) 84-89.

[2] Blackwell, T. A., Bentley, P. Improvised music with swarms.
In Proceedings of IEEE Congress on Evolutionary
Computation 2002, vol. 2, Honolulu, HI (2002), 1462-1467.

[3] Clerc, M., Kennedy, J. The particle swarm - explosion,
stability, and convergence in a multidimensional complex
space, In IEEE Transactions on Evolutionary Computation
(2002) 6(1): 58-73.

[4] Eberhart, R. C., Shi, Y. Particle swarm optimization:
Developments, applications and resources, In Proceedings of
IEEE International Conference on Evolutionary Computation,
vol. 1 (2001), 81-86.

[5] Eberhart, R. C., Shi, Y. Comparing inertia weights and
constriction factors in particle swarm optimization, In
Proceedings of IEEE International Congress on Evolutionary
Computation, Vol. 1 (2000), 84-88.

[6] Higashi, N., Iba, H. Particle swarm optimization with Gaussian
mutation, In IEEE Swarm Intelligence Symposium (2003) 72-
79.

[7] Kennedy, J. Bare bones particle swarms, In Proceedings of
IEEE Swarm Intelligence Symposium, (2003) 80-87.

[8] Kennedy, J, Eberhart R. Particle swarm optimization, In
Proceedings of IEEE International Conference on Neural
Networks, (1995) 1942-1948.

[9] Kennedy, J. Stereotyping: Improving particle swarm
performance with cluster analysis, In Proceedings of IEEE
International Conference on Evolutionary Computation,
vol. 2 (2000), 303-308.

[10] Ratnaweera, A., Halgamuge, K.S. Self organizing
hierarchical particle swarm optimizer with time-varying
acceleration coefficients, In IEEE Transactions on
Evolutionary Computation (2004) 8(3): 240-254.

[11] Shi, Y., Eberhart, R. C. Empirical Study of particle swarm
optimization, In Proceedings of IEEE International
Conference Evolutionary Computation, Vol. 3 (1999), 101-
106.

[12] Storn, R., Price, K. Differential evolution – a simple and
efficient heuristic for global optimization over continuous
spaces, Journal of Global Optimization, 11(4) (1997) 341–
359.

[13] Trelea, C. I. The particle swarm optimization algorithm:
convergence analysis and parameter selection, Information
Processing Letters (2003), 85(6), 317–325.

[14] van den Bergh, F., Engelbrecht, P. A. Effects of swarm
size on cooperative particle swarm optimizers, In
Proceedings of GECCO-2001, San Francisco CA, (2001),
892-899.

[15] Xie, X. F., Zhang, W. J., Yang, Z. L. A dissipative particle
swarm optimization, In Proceedings of IEEE Congress on
Evolutionary Computation (2002), 1456-1461.

[16] Xie, X. F., Zhang, W. J., Yang, Z. L. Adaptive particle
swarm optimization on individual level, In Proceedings of
International Conference on Signal Processing (2002),
1215-1218.

[17] Yao, X., Liu, Y., Lin, G. Evolutionary programming made
faster, IEEE Transactions on Evolutionary Computation,
vol 3, No 2 (1999), 82-102.

184

